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The influence of a nonconstant magnetic-field gradient on the the magnetic-field gradient over the active sample volume
performance of pulsed-field-gradient NMR diffusion experiments (the active sample volume is taken to be the volume enclosed
was investigated by performing Brownian-dynamics simulations by the RF coil) may vary in design due to factors such as
for two different coil designs using two different active sample available space, required direction of the gradient (i.e., z, x,
volumes for each coil. The active sample volumes were chosen in or y), and desired strength of the gradient. The anti-Helm-
order to represent different degrees of deviation from a perfectly

holtz coil (15, 16) (also called the Maxwell pair) and theconstant magnetic-field gradient. The results show that one can
quadrupole coil (17–19) are two common coil configurationsactually tolerate a rather large deviation from a perfectly constant
used today. There are also other types of configurations re-magnetic-field gradient and still obtain accurate values of the self-
ported in the literature (20–22). The quadrupole coil hasdiffusion coefficients. The dependence of D (the observation time)
some definite advantages over other configurations. It givesand the dependence of D (the self-diffusion coefficient) while keep-

ing D and D constant, respectively, were also investigated for field-gradient uniformity over large sample volumes and has
three of the active sample volumes. The simulations show that the lower inductance. The latter property is important for better
effects due to a nonconstant field gradient depend only slightly performance in high-gradient PFG experiments, since it
on the values of D and D. In conclusion, the Brownian-dynamics allows for rapid rise and fall times of the gradient pulses.
computer simulations procedure is a quantitative way of investi- However, the quadrupole coil is not a suitable choice
gating the performance characteristics of a gradient coil of a cer- when using superconducting magnets. The reasons for this
tain design before it is built. q 1997 Academic Press

fact is that the direction of the main field is such that the
gradient coil must be placed perpendicular to the main field,
which is impractical. Therefore the anti-Helmholtz coil is a

INTRODUCTION preferable choice of coil configuration in superconducting
magnets.

The determination of self-diffusion coefficients by means It is well known (23, 24) that a large pulsed gradient pro-
of the pulsed-field-gradient (PFG) method is a versatile ex- duces field disturbances which may persist long after the
periment (1–3). In particular, it has been very useful in the gradient is switched off. The most effective way of circum-
field of solution structure of complex fluid systems such as venting this problem is to actively shield (25–27) the main
micellar and microemulsion solutions (4, 5) and cubic liquid- gradient coil so that the far field will be reduced and gradient
crystalline phases (6, 7). Quite recently, it has also been used shape distortions from eddy currents and other induction-
to probe structures in porous systems in a fashion similar to related effects will be diminished. When the gradient coil is
scattering experiments (8, 9). Characterization of emulsions shielded, the gradient strength is decreased and the gradient
(10), e.g., with respect to their droplet size distribution (11– uniformity is often deteriorated over the active sample vol-
14), is yet another application. ume (28). Another obvious way of reducing the far field is

When measuring self-diffusion with the PFG method, one to place the main gradient coil as close as possible to the
uses essentially a standard NMR probe to which a magnetic- sample. Such an arrangement will also increase the gradient
field-gradient coil is added, producing a varying magnetic strength over the active sample volume, which is favorable
field (the variation should be linear) superimposed on the

when measuring slow diffusion, e.g., high-molecular-weight
main field (B0) of the magnet. The gradient coil that induces

polymer diffusion. By moving the main gradient coil closer
to the sample, the gradient uniformity over the active sample
volume also deteriorates. The question is then how these* To whom correspondence should be addressed.
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deviations from a perfectly constant magnetic-field gradient,
which is assumed in the theory relating the echo intensities
to the diffusion coefficient, influence the diffusion experi-
ments in practice.

In this paper, we address this question by employing
Brownian-dynamics computer simulations. In the investiga-
tions we have used two different gradient coil designs. The
first one is a gradient coil of our own design optimized over
an active sample volume with r Å 5 mm and z Å {10 mm
and the second one is a gradient coil design taken from the
literature (29) optimized over an active sample volume with

FIG. 2. Schematic picture over the active sample volume. The shadedr Å 4 mm and z Å {4 mm (see Table 1). For each gradient
area represents the area over which the calculations are performed. Thecoil, we have performed simulations for two different active coordinates used in Eqs. [2]–[4] are also illustrated.

sample volumes, to represent different degrees of deviation.
The disposition of this paper is as follows. First, we give

ried out under conditions of constant t, which means thata short theoretical background and some comments concern-
the relaxation term [E0 Å EtÅ0exp(02t/T2), where T2 is theing the computational details. Subsequently, we discuss the
transverse (spin–spin) relaxation time] is constant and cannumerical simulation method used. We then present the re-
be omitted. In what follows we will assume that such is thesults from the Browian-dynamics computer simulations. Fi-
case, and normalize all the intensities by assuming that thenally, results from the outcome of a ‘‘practical’’ experiment
term E0 is equal to one, and it is understood that the echofor each coil design and one active sample volume are given.
intensity is always estimated at 2t. In the presentation ofSome comments on the results will also be presented.
the data, we will make use of the variable k, defined as k å
g2d2(D 0 d/3). Throughout, we will use the value of g forTHEORETICAL AND COMPUTATIONAL
protons (viz. 26.7520 1 107 rad T01s01).CONSIDERATIONS

Magnetic-field and gradient calculations. In the PFG
experiment, it is assumed that the magnetic-field gradientIntroduction. The simplest version of a PFG NMR ex-
(g) is constant over the active sample volume. In reality,periment (30) is based on the pulse sequence shown in Fig.
this is not the situation, especially when the gradient coil is1. For the case of free diffusion, the echo decay is given by
of the anti-Helmholtz type used in a superconducting magnet
(see discussion above).

E(d, D, g, t) Å E0expF0g2g2d2SD 0 d

3DDG , [1] By knowing the positions of the current loops for the
gradient coil, one can calculate the magnetic field [Bz(r, z)]
and gradient [dBz(r, z)/dz] to obtain their spatial variation.

where E(d, D, g, t) and E0 are the echo intensities at time The magnetic field and its gradient at the coordinates (r, z)
2t in the presence of gradient pulses of strength g and in arising from a current loop at (r0, z0) (see Fig. 2) are given
the absence of any gradient pulses, respectively. The time by (31)
between the 907 and 1807 pulses is t, g is the gyromagnetic
ratio, d is the length of the gradient pulses, D is the distance

Bz(r, z) Å m0I

2p
1

[(r / r0)
2 / (z 0 z0)

2]1/2

between the leading edges of the gradient pulses, and D is
the self-diffusion coefficient. The experiment is usually car-

1F r2
0 0 r2 0 (z 0 z0)

2

(r 0 r0)
2 / (z 0 z0)

2 E(m) / K(m)G [2]

dBz(r, z)
dz

Å 0 m0Im
3/2(z 0 z0)

16pr5/2
√
r0

1 F2m 0 m2 / (0m2 / m 0 1)(r/r0)
(1 0 m)2 E(m)

FIG. 1. The basic Stejskal–Tanner pulsed-field-gradient experiment
(30). The symbols are interpreted as follows: d is the length of the gradient
pulse, D is the distance between the leading edges of the gradient pulses, 0 0.5m 0 (1 0 0.5m)(r/r0)

1 0 m
K(m)G, [3]

and g is the gradient strength.
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TABLE 1where m0 is the magnetic permeability for vacuum, I is the
Coil Characteristics for the Two Coil Designs and the Fourcurrent, and m is given by

Active Sample Volumes Investigated

Active sample volumem Å 4rr0

(r / r0)
2 / (z 0 z0)

2 . [4]
Mean gradienta

Coil rmax (mm)b zmin,max (mm)b (mT m01) Figure

K(m) and E(m) represent complete elliptic integrals of the
Ac 5 {10 36.09 4afirst and second kind, respectively (32). With these equa-
Bc 2.5 {5 34.48 4b

tions, and by assuming linear superposition, the magnetic Cd 5 {10 33.33 4c
field and gradient are obtained by summing over all current Dd 4 {4 36.30 4d
loops.

a Calculated over the active sample volume, using Eqs. [3] and [4]. TheIt is impractical to use Eqs. [2] and [4] in the simulations,
mean gradient was obtained from 40,401 calculation points.since the computation time of the magnetic-field strength b See Fig. 2.

from these equations will be considerable. Therefore, Bz was c Coil design of our own.
represented by a polynomial according to d Coil design by Gibbs et al. (29).

Bz(r, z) Å P1 / P2r / P3z / P4r
2 / P5z

2 / P6r
3

shows one typical Bz field and the difference between the
polynomial representation and the ‘‘exact’’ field is also in-/ P7z

3 / P8rz / P9r
2z / P10rz2, [5]

cluded. For reference, we have summarized the coil charac-
teristics in Table 1 for each coil design and the four differentwhere r and z are the coordinates in space as defined in
active volumes. Finally, we note that the sensitivity of theFig. 2, and Pn are expansion coefficients. The current was
signal detected depends on the position in the RF coil. Inassumed to occur in the center of the wires as given by the
what follows, we have ignored this fact and assume thatcoordinates of the loops. Polynomial expansions of the ellip-
each volume element in the active sample volume con-tic integrals in Eqs. [2] and [3] were used (32). For reasons
tributes equally to the signal.of symmetry, the calculations were performed only over the

area that is shown by Fig. 2, and between 66 and 81 calcula- Gradient surfaces. Figure 4 shows the four gradient sur-
tion points were used for the four active sample volumes. faces evaluated from Eqs. [3] and [4]. The results in the
The accuracy of the fits of Eq. [5] to the points generated contour plots are the relative deviations (100 1 [(g 0 gmean)/
by Eqs. [2] and [4] is in general quite reasonable. Figure 3 gmean]) from the mean gradient over the active sample volume

(see Table 1). The largest deviation for the best case is
approximately 4% (D) and for the worst case, approximately
50% (C). The large deviation in the second case is explained
by the fact that the coil is not optimized over such a large
active sample volume. Nevertheless, the result from C is
included for comparison.

COMPUTER SIMULATIONS

The use of Brownian-dynamics computer simulations is a
simple way of investigating how deviations from a perfectly
constant gradient influence the attenuation of the signal. The
outcome of the simulations will be exact (for a given field-
gradient profile) and suffer only from statistical uncertainty.
However, by increasing the length of the simulation, one
may obtain data with any desired accuracy.

The algorithm for generating the motion of a single mole-
cule in the space1 of the active sample volume is given by

1 It should be remarked that in order to restrict the Brownian motion to
the configurational space only, the time step Dt must be larger than theFIG. 3. A typical fit of Eq. [5] to Bz calculated according to Eqs. [2]

and [4] (upper panel). Also shown are the differences between the fit and relaxation time of the velocity–time correlation function. For small mole-
cules such as water, the relaxation time is on the order of picoseconds andthe calculated values (lower panel). The calculations were performed for

the coil configuration A (see Table 1). since Dt used is on the order of milliseconds, the condition is well fulfilled.
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FIG. 4. Relative deviations (in %) from the mean gradient (see Table 1) over the active sample volume for case (a) A, (b) B, (c) C, and (d) D.

where D is the self-diffusion coefficient of the molecule,r(t / Dt) Å r(t) / R(Dt), [6]
and dab is the Kronecker delta symbol. The starting position
was randomly selected from a homogeneous density distri-where r(t) is the position of the molecule at time t, r(t /
bution in the active volume.Dt) is the position at a time interval Dt later, and R(Dt) is

The simulated phase shift f of molecule i is, for the pulsea random displacement vector representing the result of the
sequence in Fig. 1, given bycollisions of the molecule with its surroundings during Dt

(33, 34). The components of R(Dt) were taken from a
Gaussian probability distribution function with the statistical fi[d, D, Bz(r, z)] Å gB0t / Dfi, [9]
properties

where the first term describes the Larmor precession due to
»Ra(Dt)… Å 0 [7]

the main field of the magnet. This term is constant over the
active sample volume and can be omitted. The simulated»Ra(Dt)rRb(Dt)… Å 2DDtdab, [8]
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phase shift Dfi caused by the diffusion of molecule i can
be written as

Dfi[d, D, Bz(r, z)]

Å gF*t1/d

t1

Bz[ri(t), zi(t)]dt 0 *
t1/D/d

t1/D
Bz[ri(t), zi(t)]dtG

É gF∑
t1/d

jÅt1

Bz(ri, j, zi, j) 0 ∑
t1/D/d

jÅt1/D

Bz(ri, j, zi, j)G(Dt), [10]

where Bz(r, z) is described by Eq. [5] and t1 is the time of
the application of the first gradient pulse (see Fig. 1). The
other quantities are given elsewhere. For a given set of sys-
tem parameters g, Bz(r, z), d, and D, the distribution of
the phase shift P(Df) was obtained by simulating N spin
trajectories. Finally, the attenuation of the spin echo due to
the diffusion was calculated from

E[d, D, Bz(r, z)]

FIG. 5. Attenuation (s) vs k [k å g2d2(D 0 d/3)] from the simulationÅ *
`

0`

P(Df)cos(Df)d(Df) É 1
N

∑
N

iÅ1

cos(Dfi), [11] of free diffusion with constant g. A nonlinear least-squares fit of Eq. [1]
to the data is included (—) as well as the residuals (s) between the
simulation and the fit. Parameters used: D Å 140 ms, D Å 2 1 1009 m2s01,
and g Å 0.036 T m01.where all the symbols are defined above. An attenuation

curve corresponding to several d values was sampled for
each trajectory.

The uncertainty of the simulated attenuation is given as
used, viz. N Å 105 trajectories and a time step Dt of 0.01

one standard deviation. It is estimated from the spread of
ms, for all subsequent simulations. Under these conditions,

subbatches of the total number of trajectories according to
the CPU time required for a single simulation covering dif-
ferent d values was at most 12 hours on an IBM RS/6000
590 workstation.s2(»E …) Å 1

nb(nb 0 1)
∑
nb

bÅ1

(»E …b 0 »E …)2, [12]

RESULTS AND DISCUSSION
where »E …b is the attenuation from one subbatch consisting

This section contains two parts. First, we will discuss theof N/nb trajectories, »E… is the attenuation from the N trajecto-
results of the computer simulations. Then we present resultsries, and nb Å 10 is the number of subbatches.
of a ‘‘practical’’ experiment, in which the common protocolIn order to verify the numerical procedure, simulations
for determining self-diffusion coefficients in a real experi-were first carried out in the case of constant g. Figure 5
mental situation has been followed.shows the simulated attenuation vs k. The simulated results

were obtained by using N Å 105 trajectories and a time Simulations. In Fig. 6 the results of the computer simula-
tions for the four active sample volumes are shown. Resultsstep Dt Å 0.01 ms. The estimated standard deviation of the

attenuation according to Eq. [12] is in the range of 0.000 to from a nonlinear least-squares fit of Eq. [1] to the data,
where g and the physically irrelevant parameter E0 (see Eq.0.0015 with a mean of 0.0009. Also shown in Fig. 5 is a fit

of Eq. [1] to the simulated data, and the difference between [1]) are optimized, are also included, as well as the residuals
between the fit and the simulated points. The residuals inthe simulated data and the fit for each k value. The difference

is at most 0.0005. Thus, this verifies the simulation proce- Fig. 6 are considerably larger (by a factor of 20 for the
‘‘worst’’ case) than those in Fig. 5. The increased values ofdure and indicates that the error in the simulated attenuation

is well within the estimated standard deviation. The residuals the residuals are caused by the fact that we are now fitting
an equation which is strictly only valid for the case of aare not randomly distributed since attenuations for all d val-

ues were collected for each trajectory (see discussion below). constant field gradient to data where this is clearly not the
case. Thus, the difference in magnitude of the residuals be-If not stated otherwise, the same simulation parameters were
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FIG. 6. Attenuation (s) vs k [k å g2d2(D 0 d/3)] from the simulations of free diffusion in the different active sample volumes: (a) A, (b) B, (c) C,
and (d) D. A nonlinear least-squares fit of Eq. [1] to the data is also included (—), where g (see Table 2) and the physically irrelevant parameter E0

(see Eq. [1]) are optimized. The residuals (s) are included as well. Parameters used: D Å 140 ms, D Å 2 1 1009 m2s01, and Bz was given by Eq. [5].

tween Figs. 5 and 6 gives an indication of the error caused the fits of Eq. [1] to these data are presented in Fig. 7. As
can be seen, the residuals for the case of a constant fieldby using Eq. [1] in the evaluation of data from a typical

gradient experiment in which the field gradient is not con- gradient are now reduced (over most of the k values investi-
gated), while it remains essentially unchanged for the C case,stant. To further validate this statement we have performed

simulations for the case of a constant field gradient and for proving that the residuals in Fig. 6 are indeed caused by the
nonconstant field gradient.C (see Table 1) using N Å 106 trajectories. The residuals in
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TABLE 3
Results According to Fits of Eq. [1] to Simulated Data,

for Different Values of D

Coil D (ms) gfit (mT m01)

A 70 35.96
140 35.92
280 35.95

C 70 33.36
140 33.32
280 33.30

D 70 36.34
140 36.26
280 36.27

Note. Parameters used: D Å 2 1 1009 m2 s01 (close to the value of water
at 257C) and Bz was given by Eq. [5].

FIG. 7. The residuals between the simulated and the fitted attenuation
vs k [k å g2d2(D 0 d/3)] from simulation of free diffusion with constant
g and N Å 105 trajectories (l), constant g and N Å 106 trajectories (s),

Moreover, we have investigated the influence of differentcoil C and N Å 105 trajectories (j), and coil C and N Å 106 trajectories
values of the self-diffusion coefficients, while keeping the(h). Please note that the values of the residuals in the constant gradient

case have been multiplied by a factor of 10. Notice also that the open observation time constant at DÅ 140 ms. The corresponding
squares are partly or completely hidden by the filled squares. fitted gradient strengths are compiled in Table 4, and also

here the simulations show very little difference for different
self-diffusion coefficients.

The results, i.e., the gradient strengths of the fits, are
‘‘Practical’’ experiment. When performing practicalcompiled in Table 2. By comparing the obtained values of

self-diffusion experiments, one usually follows the followingg from the fits with the calculated mean gradient (see Table
protocol. First, the gradient strength g is determined by per-1) for each active sample volume, it is clear that there is,
forming experiments on a substance for which the self-diffu-perhaps expected, a rather good agreement between the two
sion coefficient is known [see discussion in (3)]. Substancesvalues. We also note that, even when the magnetic field
often used are water (35) or different hydrocarbons (36).deviates considerably from the linear case (see Figs. 4a and
The gradient strength is then obtained by fitting Eq. [1] to4c), the deviations in the simulated echo amplitudes com-
the echo amplitudes, accumulated by different durations (orpared to the linear case (see Figs. 6a and 6c) are not very
amplitudes) of the gradient pulses.pronounced.

Subsequently, the PFG experiment is performed on theFor three of the active sample volumes (A, C, and D) we
sample with an unknown self-diffusion coefficient D, and thehave investigated the dependence of D, while keeping the
value of D is obtained by using standard fitting procedures ofself-diffusion coefficient constant at D Å 2 1 1009 m2 s01.

The fitted gradient strengths for different values of D are
given in Table 3, and there is only a small dependence on

TABLE 4
the value of D.

Results According to Fits of Eq. [1] to Simulated Data,
for Different Values of D

TABLE 2 Coil D (m2 s01) gfit (mT m01)
Results According to Fits of Eq. [1]

A 2 1 1009 35.92to the Simulated Data in Fig. 6
4.23 1 10010 35.93

4 1 10011 35.92Coil gfit (mT m01) Figure
C 2 1 1009 33.32

4.23 1 10010 33.37A 35.92 6a
B 34.44 6b 4 1 10011 33.37

D 2 1 1009 36.26C 33.32 6c
D 36.26 6d 4.23 1 10010 36.31

4 1 10011 36.31
Note. Parameters used; D Å 140 ms, D Å 2 1 1009 m2 s01 (close to the

value of water at 257C), and Bz was given by Eq. [5]. Note. Parameters used: D Å 140 ms and Bz was given by Eq. [5].
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TABLE 5 CONCLUSIONS
Results According to the Simulation of a ‘‘Practical’’ PFG

Determination of Self-Diffusion Coefficients, Where Eq. [1] Has In conclusion, we have demonstrated that deviations from
Been Fitted to the Simulated Data linearity in the magnetic field, as produced by the gradient

system, do not influence the outcome of a PFG experiment
Gradient calibration

to any significant extent. In fact, one can afford quite large
Coil Dact (m2 s01) gfit (mT m01) deviations from linearity, as compared to those commonly

found in experimental setups, without losing too much accu-
A 4.23 1 10010 35.8

racy in the self-diffusion coefficient obtained. As a conse-D 4.23 1 10010 36.2
quence, it is recommended that the radius of the main gradi-

Determination of ‘‘unknown’’ self-diffusion coefficient ent coil be decreased, although this produces a poorer linear-
ity of the magnetic field. The advantages are, however,Coil Dact (m2 s01) Dfit (m2 s01)
higher gradient strengths and a reduced far field. Large val-

A 4.00 1 10011 4.03 1 10011 ues of the far field may cause problems such as eddy cur-
D 4.00 1 10011 4.02 1 10011 rents, which deteriorate the quality of the experiments.

The Brownian-dynamics computer simulation procedure
Note. Random noise was added to the simulated data corresponding to

presented here offers a quantitative way of investigating thea S/N ratio of 200:1. Parameters used: D Å 140 ms and Bz was given
performance characteristics of a gradient coil of a certainby Eq. [5]. The abbreviation ‘‘Dact’’ stands for the actual self-diffusion

coefficient. design before it is built.
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we have used hexadecane (C16H34) which has a self-diffusion (1991).
coefficient of 4.23 1 10010 m2 s01 at 257C (36). The sample 7. P. Ström and D. Anderson, Langmuir 8, 691 (1992).
with the ‘‘unknown’’ self-diffusion coefficient has a self- 8. P. T. Callaghan, A. Coy, D. MacGowan, K. J. Packer, and F. O.

Zelaya, Nature 351, 467 (1991).diffusion coefficient of 4 1 10011 m2 s01. To put this value
9. P. T. Callaghan, A. Coy, T. P. J. Halpin, D. MacGowan, K. J. Packer,into context, it corresponds to the self-diffusion coefficient

and F. O. Zelaya, J. Chem. Phys. 97, 651 (1992).of the surfactant in a 10 wt% aqueous solution of dodecyl
10. P. Becher, ‘‘Encyclopedia of Emulsion Technology. Basic Theoryoctaethylene glycol (C12E8). The self-diffusion coefficients

Measurement Applications,’’ Dekker, New York/Basel, 1988.obtained for each coil design are in good agreement with
11. K. Packer and C. Rees, J. Colloid Interface Sci. 40, 206 (1971).the actual self-diffusion coefficient. The differences between
12. P. T. Callaghan, R. Humphrey, and K. W. Jolley, J. Colloid Interfacethe actual and the calculated values are within 1%. Please

Sci. 93, 521 (1983).note that one of the active sample volumes corresponds to
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